Comparison of Machine Learning Methods for Prediction of Epilepsy by Neurophysiological Eeg Signals

نویسندگان

  • MEENAKSHI SOOD
  • VINAY KUMAR
چکیده

Investigation of brain disorders especially epilepsy and impaired cognitive functions are the most common clinical application of neurophysiologic signals. EEG signals reflect the activity of brain and are capable of assessing the brain condition during abnormalities. In this study we have investigated the potential of two different algorithms (back propagation and radial basis function) of neural network technique for classification of patients suffering from epilepsy through EEG. Classification is based on quantitative parameters obtained from neurophysiologic signals used to train the networks and the performance of the networks is analyzed to confirm the efficacy of the network. Accuracy obtained with multi-layer perceptron NN is 99.6% and with radial basis function is 96.8%. The sensitivity obtained for pre-ictal, ictal and normal conditions are 93.9%, 100% and 97%, respectively in case of back propagation neural network algorithm. The comparative analysis is based on variation in network topology and in feature vector used for training the networks. Results from this study indicate that a classification system based on ANN may help in automation of analysis of neurophysiologic signals and the number and type of parameters used as feature set decide the type of network to be used for the better efficiency of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Monitoring Depth of Anesthesia by Nonlinear Correlation Measures

Background: Monitoring the depth of anesthesia (DOA) takes an important role for anesthetists in order avoiding undesirable reactions such as intraoperative awareness, prolonged recovery and increased risk of postoperative complications.The Central Nervous System (CNS) is the main target of anesthetic drugs, hence EEG signal processing during anesthesia is helpful for monitoring DOA. In order t...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Psychological, Neurophysiological, and Mental Factors Associated With Gamma-Enhancing Neurofeedback Success

Introduction: Regarding the neurofeedback training process, previous studies indicate that 10%-50% of subjects cannot gain control over their brain activity even after repeated training sessions. This study is conducted to overcome this problem by investigating inter-individual differences in neurofeedback learning to propose some predictors for the trainability of subjects. Methods: Eight hea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014